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How individuals view the world is critical to understanding human behavior. Yet, almost all research 
within perception and judgment has drawn inferences from group-level behavior, with little work 
focused on understanding how the individual perceives their world. However, for complex judgments 
(e.g., trustworthiness), most of the meaningful variance is due to factors specific to the individual. 
Here we showcase a data-driven reverse correlation method for visualizing any perceptually-
derived stereotype at the individual level. We show that our method (1) produces photorealistic and 
reliable results related to a broad range of judgments, (2) produces valid, psychologically-aligned 
representations of what individuals are imagining “in their mind’s eye”, and (3) is capable of capturing 
visual representations sensitive enough to examine context-dependent categories (e.g., a trustworthy 
individual to babysit your children vs. to fix your car). Across all studies, we highlight the theoretical 
implications and utility of developing idiosyncratic models of visual perception.
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“If the doors of perception were cleansed every thing would appear to man as it is, infinite.”
—William Blake, The Marriage of Heaven and Hell.

William Blake’s1insight is that human perception of reality is limited by one’s own experiences and biases: what 
one perceives is marred by one’s past history and subjective interpretations. Yet, much of what is empirically 
known about preference, judgment, and decision making has been studied and interpreted through the lens of 
group-level behavior. That is, our understanding of how individuals perceive others2,3, objects4,5, scenes6, and 
many other facets of our world7 are based on data aggregated across many participants and observations.

However, group-level estimates (i.e., “averages”) can be misleading. When data are averaged together, any 
“noncompliant” observations are treated as noise and are, essentially, discarded (e.g8). In other words, important 
idiosyncratic differences can be masked when averaging data. In fact, studies that partition the reliable variance 
of judgments into shared (e.g., due to stimulus features) and idiosyncratic variance (e.g., due to the individual 
and individual-by-stimulus interactions) show that the latter trumps the former in many cases. For example, 
studies on attractiveness judgments9–14find that idiosyncratic variance exceeds shared variance. The results are 
even more dramatic for complex judgments such as perceived trustworthiness from facial appearance. These 
judgments are highly individualized with over 50% of the variance due to idiosyncratic components and less 
than 5% due to shared components10. Likewise, social category judgments such as perceived sexual orientation, 
political ideology, and religiosity also appear to be largely explained by individual-level contributions15. These 
findings are not limited to studies of facial judgments and extend to diverse domains, including aesthetics16–18, 
architecture19, dancing20, personality traits21,22, voices23,24, and even the evaluation of academic work through 
peer review25. Despite these findings, modeling and interpreting averages continues to be the norm across many 
subdisciplines of behavioral science7.

To be clear, the insights gleaned from work that aggregates across participants and observations are 
fundamental, especially in the domain of modeling or visualizing the configurations of perceptual features that 
drive particular judgments. One way that group-level averages have been examined within perception science 
is through computational data-driven methods. These methods are capable of measuring and visualizing how 
people view stimuli in their “mind’s eye” (for reviews see26–28), and have proven crucial to understanding the 
mental representations of a variety of stimuli, including visual stereotypes of social groups, facial emotions, 
specific facial attributes, identities, and objects2,29–41.
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Computational data-driven models of facial judgments have been particularly successful in making the 
“ineffable” explicit38,42. In essence, these models capture the shared variance in judgments or consistent stimulus 
features that influence the specific judgment on average. In the case of judgments of trustworthiness, for 
example, multiple studies have shown that global attributes such as positive expressions and femininity increase 
these judgments2,35,43–45, but even for these attributes there is large variation in how individuals weigh them in 
their individual judgments. The variation is even larger for specific features: while one individual may perceive 
large eyes and round faces as strong cues for trustworthiness, another individual may perceive smaller eyes 
and angular faces as such cues10. As a result, models that aggregate across participants provide only a limited 
understanding of perception and judgment.

Here we propose and validate a data-driven method that leverages generative artificial intelligence to capture, 
visualize, and quantify idiosyncratic representations of any social judgment that individuals hold in their “mind’s 
eye.” The method allows for the construction of psychologically aligned models: reliable, robust, photorealistic, 
and representing valid constructs at the level of the individual participant.

All computational data-driven models of judgments are a version of reverse correlation, which identifies a 
quantitative relationship between high-dimensional variables (e.g., visual stimuli) and judgments28. The key to 
these methods is that the input stimuli are randomly varied – either randomly generating faces from a multi-
dimensional face space (e.g2), or superimposing randomly generated visual noise on facial stimuli (e.g38). These 
methods quantify and visualize the stimulus variation that is predictive of judgments. However, existing methods 
have been almost exclusively applied to aggregated judgments or group-level behaviors2,3,32,34,35,46,47, because 
individual models cannot be reliably estimated or they are noisy and hard to interpret48. In this paper, capitalizing 
on recent advances in deep learning with respect to modeling face evaluation3, we combine procedures from the 
existing data-driven methods to generate rich individual representations of a variety of social judgments. As in 
face-space-based reverse correlation methods, we randomly generate facial stimuli from a multidimensional 
space by either projecting real faces into the latent space using various encoding methods (Studies 1 & 2) or 
sampling directly from the latent space (Studies 3 & 4; Fig. 1). As in psychophysical reverse correlation methods, 
participants make categorical judgments about each of these stimuli and we use their judgments to build a model 
of the individual participant’s judgment.

In four studies, we show that our method is capable of producing photorealistic and reliable visual models 
across a broad range of social judgments at both the group and individual levels. Building on prior research10, 
in the first three studies we use two types of judgments: those with a clear mapping to physical cues that are 
consistent across observers (e.g., femininity/masculinity, age) and those with a mapping that is less consistent 
across observers (e.g., trustworthiness, familiarity). Correspondingly, whereas most of the variance accounting 
for the former is shared, most of the variance accounting for the latter is idiosyncratic. Irrespective of the type 
of judgments, we predicted that faces manipulated by models of individual participants would be rated by other 
participants according to the model’s predictions (e.g., faces manipulated to appear more trustworthy would be 
rated as more trustworthy), but visual models of highly shared judgments would be more similar to each other 
than visual models of highly idiosyncratic judgments. More importantly, we predicted that for highly idiosyncratic 
judgments, participants’ own visual models would be more predictive of their own ratings compared to visual 
models of other participants (Studies 2 and 3). Finally, we show that our method of generative reverse correlation 
is sensitive enough to visualize idiosyncratic representations across context-dependent social judgments (e.g., a 
trustworthy individual to babysit your children vs. a trustworthy individual to fix your car; Study 4).

Study 1
Generative reverse correlation
The primary objective of Study 1 was to introduce the generative reverse correlation procedure and to demonstrate 
that the models of individual participants’ judgments are interpretable. We have discussed the procedure as a 
proof-of-concept, creating models of a few participants9, but we have not tested it in a larger sample and we have 
not validated these models in a separate group of participants.

We used two judgments–femininity/masculinity and trustworthiness–as these two are clearly different with 
respect to the relative proportion of shared and idiosyncratic variance. Whereas most of the meaningful variance 
in femininity/masculinity is shared variance, most of the meaningful variance in trustworthiness judgments 
is idiosyncratic9,10. In the first stage of the experiment (Phase I), participants categorized randomly generated 
synthetic–but realistic-appearing–faces on the respective judgment dimensions. We used their categorizations 
to create idiosyncratic visual models of their judgments (Fig.  2A). Consistent with variance partitioning 
studies9–11,15,24, we expected that the models of femininity/masculinity judgments would be more similar to 
each other than the models of trustworthiness judgments.

In the second stage of the experiment (Phase II), a new sample of participants rated faces generated by the 
models of individual participants from the first stage. The objective was to validate these individual models. 
We expected that participants’ ratings would track with the models’ predicted values (e.g., faces manipulated to 
appear trustworthy would be rated as more trustworthy). Further, given that judgments of trustworthiness and 
masculinity are negatively correlated2, we expected that the judgments would be differentially sensitive to the 
two judgment models (e.g., the slope of trustworthiness judgments would be positive for faces generated from 
trustworthiness models and negative for faces generated from masculinity models).

Similarity between idiosyncratic visual models
We used cosine similarity to assess the similarity between latent vectors for each of the participants’ visual 
models constructed in Phase I. Because each model is a vector of real numbers in the generative model’s latent 
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space, we calculated the average cosine similarity for each participants’ individualized model vector and every 
other participants’ model vector.

Consistent with previous variance partitioning studies that show more consensus for judgments of femininity 
and masculinity compared to judgements of trustworthiness9–11, the average similarity of feminine-masculine 
idiosyncratic visual models was significantly higher than that of trustworthy-untrustworthy idiosyncratic visual 
models, t(46.98) = 21.98, p < .001, d = 5.09 (Fig. 3A).

Validation of idiosyncratic models
Across all studies, validation data were analyzed using linear mixed-effects regressions with fixed effects for 
type of visual model (e.g., the intended target judgment) and model value (i.e., linear interpolation value), along 
with random intercepts for participant and image (full linear mixed-effects regression tables are provided in 
the Supplemental Material). All validation studies included repeat trials used to assess participants’ test-retest 
reliability. Participant scores were averaged over repeat observations for each validation regression.

Fig. 1.  Generative Reverse Correlation and Validation Methodology. Stimuli for generative reverse correlation 
(top half of figure) are obtained by either randomly generating them from real neutral faces projected into the 
generative model’s latent space (A and B), averaging together a sample of projected faces, and adding noise 
(C), as in Studies 1 and 2 (S1, S2), or sampling directly from the generative model’s latent space (D), as in 
Studies 3 and 4 (S3, S4). Examples of images generated through each method are shown in (E). The face images 
presented in (A) are synthetic faces for illustrative purposes only. Participants classify each of the generated 
stimuli as either the target category judgment (e.g., “trustworthy”), the conceptually opposite target category 
judgment (e.g., “untrustworthy”), or a “neutral” category. After participants classify the stimuli, idiosyncratic 
visual models are created by first averaging the latent values associated with each of the three categories. Next, 
the average latent vector of the conceptually opposite target judgment is subtracted from the average latent 
vector of the target judgment. We call this latent vector the “idiosyncratic visual model”. To visualize images 
from each participant’s model, the average latent vector of the faces selected as the neutral category is added 
to the idiosyncratic visual model (F). Finally, by multiplying the idiosyncratic visual model by a constant (e.g., 
-/+2), different values of the target judgment can be visualized by interpolating through the participant’s own 
latent space. (G) displays examples of images generated from individual participants’ models of judgments that 
are highly shared (i.e., femininity-masculinity and age); and (H) displays examples of images from individual 
models of judgments that are highly idiosyncratic (i.e., trustworthiness, attractiveness, and familiarity). The 
center image in each row represents the average of all the latent vectors that the participant selected as the 
“neutral” category. Images to the left and right of the center image represent the model interpolation values at 
+/- 2, 4, 6, and 8, respectively.
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Perceived masculinity
Phase II participants judged the faces produced from each Phase I visual model as intended (Fig. 2B). Faces 
manipulated to appear more masculine were rated as more masculine. Faces manipulated to appear more 
trustworthy were rated as less masculine. The latter finding reflects the fact that masculine faces are perceived as 
less trustworthy2. These findings were reflected in a significant interaction between visual model type (feminine-
masculine vs. trustworthiness) and model value (-4 to + 4), b = 0.96, t(256.14) = 27.14, p < .001 (the main effect of 
visual model was also significant, b = 0.83, t(181.69) = 7.39, p < .001). Simple slopes analyses for each visual model 
showed a positive and significant effect for feminine-masculine visual models, b = 0.57, t(258) = 25.95, p < .001, 
and a negative and significant effect for trustworthy visual models, b = -0.34, t(254) = 12.94, p < .001.

Perceived trustworthiness
The pattern of findings was similar to judgments of trustworthiness. Faces manipulated to appear more 
trustworthy were rated as more trustworthy, whereas faces manipulated to appear more masculine were rated as 
less trustworthy. The interaction between model type (feminine-masculine vs. trustworthiness) and model value 
(-4 to + 4) was significant, b = 0.32, t(260) = 19.94, p < .001 (the main effect of model was also significant b = -0.46, 
t(260.56) = 9.08, p < .001). Simple slopes analyses for each visual model showed a positive and significant effect 
for trustworthy visual models, b = 0.21, t(253) = 17.98, p < .001, and a negative and significant effect for feminine-
masculine visual models, b = -0.11, t(269) = 9.98, p < .001.

Taken together, these results show that images produced from the idiosyncratic models in Phase I were judged 
as intended across each model value. In other words, images generated through participants’ visual models of 
feminine-masculine or trustworthy-untrustworthy images both qualitatively (i.e., through visual inspection) 
and empirically represented those categories, replicating our previous research9.

While our generative reverse correlation methodology shows promise in terms of both the construction 
of idiosyncratic visual models and their validation by other observers, a stronger validation would be to show 
that images produced from a participant’s own visual model are judged by that same participant as more 

Fig. 2.  Validation results of Study 1. Each row in (A) displays example images generated from Phase I 
participants’ idiosyncratic visual models for each condition. The center image in each row represents the 
average of all of the latents each participant selected as the “neutral” category. Images to the left and right of 
the center image represent the linear interpolation at +/- 2, 4, 6, and 8, respectively. All included participants’ 
models can be viewed in the Visualization Supplemental Materials. (B) displays the Phase II validation results 
whereby a second group of participants judged the +/-4 and +/-2 idiosyncratic visual model images generated 
in Phase I on how “masculine” or “trustworthy” each appeared. The x-axis represents the model interpolation 
values and the y-axis represents participants’ responses. Shaded areas around each line display 95% confidence 
intervals.

 

Scientific Reports |         (2025) 15:4208 4| https://doi.org/10.1038/s41598-025-86056-1

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


representative of their judgments than images from other participants’ visual models. Thus, in Study 2, we have 
the same participants who created the visual models return and judge both their own and a random sample of 
images generated from other participants’ visual models.

Study 2
Idiosyncratic validation of Generative Reverse correlation
The objective of Study 2 was to evaluate the validity of generative reverse correlation at the individual participant 
level and across a more diverse set of judgments. Instead of having an additional set of participants judge each 
resultant visual model image on the target categories, we had the same participants return to evaluate their own 
visual models. We selected femininity/masculinity and age to represent judgments high in shared variance and 
attractiveness and familiarity to represent judgments high in idiosyncratic variance. We expected that images 
created from participants’ own visual models (as opposed to models from other participants) would be more 
predictive of their subsequent judgments of images generated by models of highly idiosyncratic judgments (i.e., 
attractiveness and familiarity), but not necessarily of images generated by models of shared judgments (i.e., 
masculinity and age). In addition, consistent with Study 1, we expected that visual models of highly shared 
judgments to be more similar with one another than visual models of highly idiosyncratic judgments. For 
this study, we changed the method used to project neutral faces into the latent space to retain more detail and 
increase diversity of the generated stimuli (Fig. 4A).

Similarity between idiosyncratic visual models
Like Study 1, we used cosine similarity to assess the similarity between latent vectors for each of the participants’ 
visual models constructed in Phase I. However, we grouped the four judgments used in Study 2 into two groups 
for analysis: judgments that are highly shared (feminine-masculine and age) and judgments that are highly 
idiosyncratic (attractiveness and familiarity). We replicated the finding from Study 1 and previous variance 
partitioning studies: The average similarity of visual models of highly shared judgments was significantly 
higher than the similarity of visual models of highly idiosyncratic judgments, t(176.51) = 26.42, p < .001, d = 3.34 
(Fig. 3B).

Idiosyncratic visual model validation

Highly Shared judgments: Age and feminine-masculine visual models
Participants rated the images created by the models to appear “older” as older, evidenced by a main effect of 
model value, b = 0.48, t(50.17) = 16.53, p < .001. There was no main effect of visual model type (a participant’s 
own model vs. other participants’ models), b = 0.01, t(50.07) = 0.07, p = .948, or an interaction, b = -0.05, 
t(50.14) = 1.59, p = .117, suggesting that participants’ ratings were not more sensitive for their own than for other 
participants’ models (Fig. 4B).

Likewise, participants rated the images manipulated by the models to appear more “masculine” as more 
masculine, b = 0.55, t(50) = 8.47, p < .001. There was no main effect of visual model type (own vs. other), b = 0.03, 

Fig. 3.  Distribution of the cosine similarities for Studies 1–3 (Panels A - C, respectively). The cosine similarity 
(y axis) was calculated by taking the average similarity of each participant’s idiosyncratic visual model and 
every other participant’s visual model within a particular judgment category (x-axis; colored distributions). 
Across all studies, we predicted that the similarity for highly shared judgments (e.g., feminine-masculine, age) 
would be larger than highly idiosyncratic judgments (e.g., trustworthy, attractive). Error bars represent 95% 
confidence intervals.
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t(50) = 0.10, p = .923, or an interaction, b = 0.004, t(50) = 0.05, p = .958, again suggesting no participant-level 
discrimination between their own model images and others’ model images.

These two results suggest that idiosyncratic visual models of social judgments that have high agreement, or 
high amounts of shared variance, are not any more predictive than random participants’ visual models. However, 
this does not mean these models are not representative of the target judgment. On the contrary, they appear able 
to visually capture the shared agreement inherent in these judgments across observers.

Highly idiosyncratic judgments: attractiveness and familiarity visual models
Participants rated the images manipulated by the model to appear more “attractive” as more attractive, b = 0.45, 
t(49.31) = 15.91, p < .001. There was no main effect of visual model type (own vs. other), b = -0.19, t(49.83) = 1.71, 
p = .093. However, there was a significant interaction, b = -0.18, t(49.37) = 5.76, p < .001. Participants’ judgments 
were more sensitive to their own visual models (b = 0.45) than to other participants’ visual models (b = 0.27). In 
particular, they judged faces at high values of their model as more attractive than faces at high values of other 
participants’ models, and vice versa for faces at low values of the models.

Similarly, images manipulated by the model to appear more “familiar” were rated as more familiar, b = 0.21, 
t(50) = 5.57, p < .001. There was no main effect of visual model type (own vs. other), b = -0.18, t(50) = 1.20, 
p = .236, but there was a significant interaction, b = -0.20, t(50) = 4.86, p < .001. Participants judged images 
manipulated by their own models to appear more familiar (b = 0.21) as more familiar, but not faces manipulated 
by other participants’ models (b = 0.01).

Together, these results further show that our method produces psychologically aligned visual representations 
across a variety of highly shared and highly idiosyncratic judgments. Specifically, participants judged images 
generated from their own visual models as more representative of the target judgment compared to images 
generated from others’ visual models. However, this only appears to be the case when the judgment being evaluated 
is high in idiosyncratic variability, such as attractiveness and familiarity. On the other hand, judgments that are 
known to have high agreement (i.e., high amounts of shared variance), such as age or femininity/masculinity, do 
not show individualized preferences. Participants judged older and masculine visual representations similarly 
across model types (i.e., their own model vs. other participants’ models).

Studies 1 and 2 provide strong evidence that the generative reverse correlation procedure is capable of visually 
capturing a diverse set of social judgments that not only appear like the judgment being examined but are also 
more predictive of the individual participant’s own preferences. However, it is still unknown whether generative 
reverse correlation is dependent on the underlying model’s latent space used to generate the images. Similarly, it 
is also unknown whether this methodology is capable of visualizing judgments beyond broad social judgment 
categories. In the next two studies we address both of these issues.

Fig. 4.  Validation results of Study 2. (A) displays examples of images generated from idiosyncratic visual 
models of two participants across each judgment condition. The center image in each row represents the 
average of all of the latents each participant selected as the “neutral” category. Images to the left and right of the 
center image represent the linear interpolation at +/- 2, 4, 6, and 8, respectively (see Visualization Supplemental 
Materials for all individual and group visual models). (B) displays the validation results. Each participant 
judged images generated by their own visual model (yellow lines) and those generated from a random 
subsample of other participants’ visual models (black lines). The x-axis represents the linear interpolation 
model values and the y-axis represents participants’ raw judgment responses. Shaded areas around each line 
display 95% confidence intervals.
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Study 3
Invariance to Model Latent Space
The stimuli for Studies 1 and 2 were created by projecting real faces into the latent space of a pretrained face 
model. This was done to ensure that each study had a quality stimulus set that was neutral in expressivity, as 
the StyleGAN-2 FFHQ latent space used in the previous studies has an overrepresentation of smiling faces. 
However, projecting neutral faces into the model’s latent space artificially constrains it to the subsection bounded 
by the faces projected into it. This results in less variability in stimulus appearance. The objective of Study 3 
was to test generative reverse correlation with stimuli sampled from a larger, more heterogeneous latent space 
trained exclusively on neutral and minimally expressive face images (see Supplemental Materials for full training 
details). Importantly, if generative reverse correlation is robust, valid, and generalizable, the results should be 
invariant to the underlying model and latent space used to create the stimuli.

The methods for Study 3 were nearly identical to those of Study 2. We had participants categorize faces 
randomly generated from a latent space that was trained on faces that were only neutral in appearance. As 
before, we selected two types of judgments to focus on: “feminine-masculine” as the highly shared judgment and 
“unattractive-attractive” as the highly idiosyncratic judgment. After categorization, we constructed idiosyncratic 
visual models for each participant and had them return to rate images manipulated by their own model and 
images manipulated from a random selection of other participants’ models (Fig. 5A).

Similarity between idiosyncratic visual models
As before, we replicated Studies 1 and 2 showing that the average similarity of feminine-masculine visual models 
was significantly higher than the average similarity of attractiveness visual models, t(116.3) = 8.23, p < .001, 
d = 1.50 (Fig. 3C).

Idiosyncratic visual model validation

Ratings of masculinity
As in Study 2, participants rated the images manipulated by the models to appear more “masculine” as more 
masculine, b = 1.47, t(26) = 6.22, p < .001 (Fig. 5B). There was no main effect of visual model type (participant’s 
own model vs. other participants’ models), b = 0.05, t(26) = 0.15, p = .879, or an interaction, b = 0.06, t(26) = 0.22, 
p = .831.

Ratings of attractiveness
Participants rated the images manipulated by the models to appear more “attractive” as more attractive, 
b = 1.09, t(26) = 11.15, p < .001 (Fig.  5B). There was no main effect of visual model type (own vs. other), b = 
-0.02, t(26) = 0.11, p = .911, but there was a significant interaction, b = 0.28, t(26) = 2.59, p = .016. Participants’ 
judgments were more sensitive to their own visual models (b = 1.09) than to other participants’ visual models 
(b = 0.82).

Together, these results replicate those in Study 2 but with one important insight: generative reverse correlation 
appears to be invariant to the underlying latent space. Our previous method required projecting real neutral 
faces into a pretrained model’s latent space in order to have a robust stimulus set that was not oversaturated with 
smiling faces. However, this approach limited the diversity of the stimuli generated. To address this, we trained 

Fig. 5.  Validation results of Study 3. (A) displays examples of images generated from each idiosyncratic 
visual model across conditions. The middle image represents the average of all faces participants categorized 
as “unsure”. Each image to the right and left of the middle represents a +/-1 model interpolation step value, 
respectively. The second example participant’s visual model in the feminine-masculine condition (second 
row from top) shows an example of a model going out-of-bounds at the extremes (> +/-3). (B) displays the 
validation results. Each participant judged images generated from their own visual model (yellow lines) 
and those generated from a random subsample of other participants’ visual models (black lines). The x-axis 
represents the model interpolation values and the y-axis represents participants’ responses. Shaded areas 
around each line display 95% confidence intervals.
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a new model using nearly 48,000 faces with neutral appearance. The resulting model is able to create a diverse 
range of novel faces with neutral expressions while maintaining a broad range of other desirable characteristics, 
such as perceived age and race (see Supplemental Material). Importantly, the results from this study replicated 
the results from Study 2. Participants’ own visual models of attractiveness (but not femininity-masculinity) were 
more predictive of their subsequent judgments.

Study 4
Context-dependent representations
Studies 1 through 3 provide strong evidence that the generative reverse correlation is capable of visually 
capturing a diverse set of social judgments that not only appear like the judgment being examined, but are also 
more predictive of the individual participant’s own preferences. In Study 4, we test whether generative reverse 
correlation is capable of capturing representations beyond broad social judgments by examining the sensitivity 
of idiosyncratic visual models to context-dependent evaluations of trustworthiness. For example, the mental 
prototype of who to trust to watch your child is likely different from the prototype of who to trust to fix your car, 
despite both being derived from evaluations of “trustworthiness.” In Phase I, we randomly assigned participants 
to make context-dependent trustworthiness judgments–who they would trust to “fix their car”, “watch their 
child”, or “invest their money”–and used their judgments to create idiosyncratic visual models. In Phase II, a 
separate group of participants judged the images generated from each Phase I participant on how much they 
trusted each individual depicted to “fix their car”, “watch their child”, or “invest their money”.

“Trust to Fix Your Car” Images.
Across all three Phase I conditions, participant ratings were in line with the visual model from which the 

images were created (Fig. 6B). Faces manipulated to appear more trustworthy in the car context were perceived 
as more trustworthy within that context compared to faces manipulated in both the “trust to watch your child” 
images and “trust to invest your money” contexts, as evidenced by significant two-way interactions between visual 
model type and model value (“trust to fix your car” vs. “trust to watch your child”: b = − 0.32, t(4620.02) = 11.57, 

Fig. 6.   Validation results of Study 4. (A) displays examples of idiosyncratic visual models generated from 
participants’ context-dependent responses. The middle image in each row represents the average of all faces 
that the example participants categorized as the “neutral” category. Each image to the right and left of the 
middle represents a +/-1 model interpolation value step, up to +/-4, respectively. All included participants’ 
models can be viewed in Visualization Supplemental Materials. (B) shows the validation results for across 
all three context-dependent judgment conditions (from top to bottom: “trust to fix your car” “trust to watch 
your child”, and “trust to invest your money”). Line colors represent the condition in which the Phase II 
participants judged each of the images, irrespective of the Phase I image context (i.e. all images were judged on 
all “trustworthiness” contexts). The x-axis represents the model interpolation values and the y-axis represents 
participants’ responses. Shaded areas around each line display 95% confidence intervals.
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p < .001; “trust to fix your car” vs. “trust to invest your money”: b = − 0.11, t(4617.50) = 3.97, p < .001). There was 
also a significant main effect for “trust to fix your car” images vs. “trust to watch your child” images, b = − 0.45, 
t(217.68) = 2.84, p = .005, but not “trust to fix your car” images vs. “trust to watch your money” images, b = -0.24, 
t(218.37) = 1.54, p = .126.

Simple slopes analyses for each visual model showed positive and significant slopes for “trust to fix your car” 
images, b = 0.23, t(479) = 8.53, p < .001, and “trust to invest your money” images, b = 0.12, t(427) = 4.45, p < .001, 
and a significant negative slope for “trust to watch your child” images, b = -0.10, t(397) = 3.72, p < .001.

“Trust to Watch Your Child” Images.
A similar pattern emerged for images manipulated to appear more trustworthy within a “watch your child” 

context. There was a significant difference in slopes between “trust to watch your child” images and both “trust 
to fix your car” (b = -0.97, t(4546.11) = 37.41, p < .001) and “trust to invest your money” images (b = -0.71, 
t(4540.58) = 28.54, p < .001). There was a significant main effect for “trust to watch your child” images vs. “trust 
to fix your car” images, b = 0.43, t(217.84) = 2.78, p = .006, but not “trust to watch your child” images vs. “trust to 
invest your money” images, b = 0.22, t(217.47) = 1.46, p = .145.

Simple slopes analyses for each visual model showed a positive and significant slope for “trust to watch your 
child” images, b = 0.58, t(392) = 24.18, p < .001, and significant negative slopes for “trust to fix your car” images, b 
= -0.39, t(462) = 4.81, p < .001, and “trust to invest your money” images, b = -0.12, t(382) = 5.16, p < .001.

“Trust to Invest Your Money” Images.
The pattern was also similar for images manipulated to appear more trustworthy within a “trust to invest 

your money” context, as indicated in significant differences between the slopes (“trust to invest your money” 
vs. “trust to fix your car”: b = − 0.55, t(3256.21) = 17.04, p < .001; “trust to invest your money” vs. “trust to watch 
your child”: b = − 0.29, t(3241) = 8.88, p < .001). There was also a significant main effect for “trust to invest your 
money” images vs. “trust to watch your child” images, b = − 0.328, t(217.45) = 2.14, p = .034, but not “trust to fix 
your car” images, b = -0.12, t(216.60) = 0.74, p = .463.

Simple slopes analyses for each visual model showed positive and significant slopes for “trust to invest your 
money” images, b = 0.43, t(282) = 14.46, p < .001, and “trust to fix your car” images, b = 0.14, t(343) = 4.47, p < .001, 
but a significant negative slope for “trust to watch your child” images, b = -0.12, t(319) = 3.85, p < .001.

Previous research on modeling judgments has focused almost exclusively on gestalt social judgments (e.g., 
judging “trustworthiness” or “attractiveness” without further context), rather than on situation- or context-
dependent social judgments. We show that generative reverse correlation provides a way to accurately capture 
visual representations that are highly sensitive and context-dependent.

Discussion
If two randomly selected individuals were asked to evaluate the attractiveness, trustworthiness, or familiarity of 
a face, the probability that they would agree with each other is low. Individuals bring their own biases, learned 
experiences, history, and desires when making complex judgments. Correspondingly, variance partitioning 
studies show that the variance of such judgments due to idiosyncratic factors exceeds the variance due to 
stimulus features10,11,13,15,24. Yet decades of research within social, cognitive, and perception science have largely 
ignored idiosyncratic contributions to judgments. Rather, research has focused on drawing inferences from 
group-level averages and treated idiosyncratic differences as noise.

Despite the documented importance of investigating idiosyncratic contributions to judgments, little work has 
attempted to explain what causes these differences and the research that has attempted to explain it has shown 
that predicting these idiosyncratic differences is difficult10,49,50. To address these limitations, we developed and 
validated a data-driven, reverse correlation method that leverages generative artificial intelligence to accurately 
and reliably visualize photo-realistic representations of social judgments from faces. Across four studies, we 
show that our method is capable of producing psychologically aligned visual representations of social judgments. 
Highly idiosyncratic judgments are important to study, yet difficult to predict. Our work allows for visualizing 
these idiosyncratic contributions, which can then be used to systematically investigate differences in perception 
and judgment beyond descriptive or predictive modeling.

Generative artificial intelligence provides an opportunity to leverage advances in computer science to answer 
important questions, particularly with respect to individualized models of behavior. Generative modeling, in 
conjunction with reverse correlation, allows for all of the benefits of data-driven reverse correlation, such as 
less potential experimenter bias, but with the addition of realistic appearing stimuli–both for the participant to 
categorize and the resulting models that are computed, studied, and visualized. This is in contrast to many of 
the previous studies and methods that require averaging over the entire set of images generated. Producing and 
visualizing psychologically aligned constructs at the individual level represents a significant step forward for 
accurately revealing individualized preferences across a host of judgments and contexts.

Using generative reverse correlation is a promising avenue for visualizing and examining both shared and 
idiosyncratic models of perception. Future work could extend the study of idiosyncratic contributions to a diverse 
set of judgments, including, but not limited to, health, occupation, or any type of social identity. Additionally, 
this process could be adapted to create individualized clinical training tools, for example, to help those with body 
dysmorphia or emotion recognition deficits.

Similarly, extending this work beyond faces would allow for systematic investigations of highly shared and 
idiosyncratic judgments beyond person perception. With a model trained on consumer products, for example, 
one could create bespoke representations of the ideal product for individuals to engage with or purchase. Such 
models can also be trained on novel shapes16 and used to facilitate the creation of aesthetic designs tailored 
to particular groups of people. The possibilities for studying idiosyncratic representations across a myriad of 
domains is limited only by acquiring a high quality set of stimuli for training new generative models.
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Lastly, there are a number of opportunities for future research to explore methodological improvements 
for generative reverse correlation. For instance, while we explored the number of trials needed for accurately 
visualizing results (see Supplemental Materials), additional research could implement an adaptive staircase 
procedure to determine optimal stopping on a per-participant basis. Likewise, face images generated from 
both StyleGAN-2 latent spaces do not control for low-level features like image background, which likely varies 
idiosyncratically and might influence evaluations. In principle, it would be possible to train a model without 
any backgrounds, remove all background features before participants make judgments, or more systematically 
incorporate these lower-level features into the model before validation.

How individuals perceive and interpret the world around them is critical for understanding human behavior. 
Individuals have their own biases, past history, wishes, desires, motives, and experiences–all of which Blake 
would argue obscure the doors of perception. Recent research has documented the importance of studying 
idiosyncrasies in perception and judgment. Yet, much of what is known about perception, judgment, and 
decision making is inferred from group-level averages of human behavior, which mask important idiosyncratic 
differences. Part of the issue is that idiosyncratic contributions to judgments are relatively easy to identify, but 
hard to formally model and predict. The methods described here provide the tools for visualizing idiosyncratic 
representations in a data-driven manner. These idiosyncratic visual models are robust, photorealistic, and 
psychologically aligned representations of how individuals perceive their world. Furthermore, these methods 
are highly extendible, opening up exciting potential to research how different sources of variance influence 
preference, judgments, and decisions beyond person perception.

Methods

Study 1
Participants
Seventy-six participants (Mage = 39.61, SDage = 10.30) were recruited through CloudResearch for the first stage 
of the experiment. Participants in Phase I self-identified as follows: 26 women, 47 men, 1 non-binary, 2 not 
reported; 6 Asian, 12 Black, 2 Latinx, 49 White, 3 more than one race, and 4 other/not reported. One-hundred 
and ten participants (Mage = 39.63, SDage= 10.26) were also recruited through CloudResearch to judge the stimuli 
generated by the visual models of participants from the first stage. Participants in Phase II self-identified as 
follows: 43 women, 62 men, 3 non-binary, 2 other/prefer not to answer; 4 Asian, 19 Black, 3 Latinx, 76 White, 6 
more than one race, and 2 other/not reported. All studies using CloudResearch participants (Studies 1, 3, and 4) 
were prescreened to be located within the United States and were “CloudResearch approved”51.

We randomly selected 10% of the trials in Phase I and all of the trials in Phase II to be repeated in order to 
assess test-retest reliability for each participant. Participants were excluded if they had negative or near zero 
(r < .05) test-retest correlation. Based on this criterion, 11 participants’ visual models from Phase I and 16 
participants from Phase II were removed from analyses.

Phase I: Model Construction
Constructing idiosyncratic visual models
The method for constructing idiosyncratic visual models shares some similarities to typical psychophysical 
reverse correlation procedures2,35. However, there are several key differences that take advantage of generative 
models. Here we briefly describe the process for constructing idiosyncratic (and group-level) visual models and 
refer the reader to previous work9 and the Supplemental Materials for more details. Model construction used 
Python version 3.6.13 (https://www.python.org/).

The method begins by generating a set of random stimuli from a pretrained generative model either by 
projecting real faces into its latent space and adding Gaussian noise (Studies 1 and 2) or sampling directly from 
the latent space (Studies 3 and 4). In the current set of studies, we used a version of StyleGAN-2 to produce 
photorealistic stimuli of faces52,53. Participants categorize each of the sampled stimuli into one of three categories: 
(1) the target judgment (e.g., masculine), (2) the conceptually opposite target judgment (e.g., feminine), or (3) a 
neutral, neither, or unsure category. The neutral or unsure category was included as prior work has shown that 
what individuals consider “neutral” also varies idiosyncratically31,32. Because each stimulus is represented as a 
matrix of numeric values in the latent space, idiosyncratic models for each participant are computed through 
matrix arithmetic: the average of all the stimulus latents selected as the anti-target is subtracted from the average 
of all the stimulus latents selected as the target attribute, and the average of all the stimulus latents selected as 
“neutral/neither/unsure” is added back. This results in a directional vector in the model’s latent space that can 
be traversed using linear interpolation (i.e., the model values) to visualize each participant’s idiosyncratic model 
at varying intensities.

Stimuli
We generated 300 neutral face stimuli by projecting real neutral faces into the latent space, averaging 10 faces 
together, and adding noise to further differentiate each face from the real faces (see Supplemental Materials 
for more details). We sampled noise from a Gaussian distribution with parameters µ = 0 and  = 0.4 to be added 
to each averaged image. Next, we computed individualized images for each of the participants using linear 
interpolation (i.e., model values) with values ranging from − 8 to + 8. If participants did not categorize any 
stimuli as “neutral/neither”, a random sample of 25 stimuli were averaged together to act as a starting point in the 
latent space and added to their idiosyncratic visual models. Example visualizations from individualized models 
are presented in Fig. 2A.
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The removal of 11 poor quality participants from Phase I resulted in a total of 260 images generated by the 
idiosyncratic visual models to be judged by participants in Phase II (65 participants × 4 images each at model 
values − 4, -2, + 2, and + 4).

Participant Procedure
Participants read brief instructions that stated the nature of the task and asked to take a moment and briefly 
imagine an individual that represented the category and the conceptually opposite category to which they were 
randomly assigned. Participants were then presented with each face one at a time and asked to categorize each 
stimulus into one of the three categories assigned to them using the “E”, “I”, or “Space” keys on their keyboard. 
Every participant saw the same 300 faces, though the presentation order was randomized between participants. 
Thirty faces were selected at random for each participant to judge twice as a measure of quality assurance (test-
retest reliability). There was a 100 ms fixation cross between trials.

After the main portion of the study, participants filled out demographic information (age, gender, race), 
answered two debrief questions (“What did you think this study was about?” and “Did you notice anything odd 
or off about the images?”), and were told the purpose of the study.

Phase II: validation of individual models
The linearly interpolated images at values of -4, -2, + 2, +4 were selected from each Phase I participant’s model to 
act as stimuli for Phase II (N = 304; 76 Phase I participants x 4 images each [Due to a coding error, participants 
in Phase II judged all images from Phase I, though the poor quality participants’ images were removed from 
analysis.]). We decided to only include model images at values up to +/- 4 to prevent participants in Phase II 
from judging images with potential artifacts (i.e., the visual model going out of sample when interpolating). All 
reported statistics were analyzed using R version 4.4.0 (https://cran.r-project.org/). 

Participant Procedure
Like in Phase I, participants first were given brief instructions detailing the condition to which they were assigned 
(i.e., judgments of masculinity or trustworthiness) and instructed that they would be making judgments for a 
number of face stimuli. Participants were randomly assigned to judge the “masculinity” or “trustworthiness” 
of a random sample of 60 images from all of those generated in Phase I (regardless of the condition that the 
Phase I participant was assigned). Phase II participants saw each image presented one at a time and asked, “How 
[masculine/trustworthy] does this individual appear?” Participants responded using a 7 point Likert-type scale 
by either pressing a number on their keyboard or by selecting the corresponding number displayed along a scale 
under each image. The scales had anchors 1 = “Not at all [judgment]” and 7 = “Very [judgment]”. Participants 
rated each face twice (across two randomized blocks) as a measure of quality assurance. Each face used in the 
reported analyses was judged by an average of 21.73 participants (median = 21, SD = 4.06, range = [11, 35]). There 
was a 100 ms fixation cross between trials. Lastly, participants filled out the same demographic information and 
debriefing questions as in Phase I.

Study 2
Participants
This study was conducted both in person and online through the authors’ university participant pool. Due to 
the asynchronous and time-consuming nature of this study, some participants started but did not finish the 
study [One participant failed to complete the study multiple times.] (Nincomplete = 16) or took the survey multiple 
times (Nrestart = 36), causing multiple responses across different conditions for the same participants. Because of 
this, we only included in the analyses participants who completed the study in its entirety and did not restart. 
This left us with a final sample of 211 participants across each of the four conditions: young/old = 49; feminine/
masculine = 64; un/attractive = 56; un/familiar = 42). One hundred and sixteen out of the 211 participants 
completed both parts of the study.

As in Study 1, we computed test-retest reliabilities for each participant. In Phase I (image model generation), 
trials were grouped into subsets of 100 trials and randomly presented to participants within each subgroup. 
Within each subgroup, 10% of images were randomly selected to be shown twice to participants in order to 
calculate test-retest reliabilities. For Phase II (image ratings), participants judged all images twice across both 
blocks. Six participants had negative or near zero test-retest reliabilities (r < .05). The final sample of participants 
that completed both Phase I and Phase II and used for the validation analyses were: young/old = 34; feminine/
masculine = 33, un/attractive = 24, and un/familiar = 19 [Excluding poor quality, repeat, and incomplete 
participants reduces the final sample for the attractive and familiar conditions below our target of 30 participants 
per condition. However, including all participants in the analyses does not change the significance, direction, or 
interpretation of the results presented.].

Participants (Mage = 29.22, SDage = 10.64) self-identified as: 130 women, 74 men, 4 non-binary, 3 not reported; 
1 American Indian/Alaskan Native, 81 Asian, 14 Black, 20 Latinx, 8 Middle Eastern or North African, 67 White, 
13 more than one race, and 7 other/not reported.

Stimuli
Stimuli for the image generation phase were created following the same procedure as Study 1 with two 
exceptions. First, we changed the image projection method (i.e., encoder) used to project the neutral faces into 
the StyleGAN-2 latent space. We used a minimally modified version of the FeatureStyleencoder54, which in turn 
uses a modified version of the Pixel2Style2Pixelencoder55. We opted to change the image encoder in an effort to 
create stimuli with greater detail after the inversion and averaging process.
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Second, we created 1,000 images (instead of 300) by averaging 10 randomly sampled real (but projected) 
neutral faces. We applied the same amount of random Gaussian noise as in Study 1 to each averaged latent to 
further differentiate the face.

Images for the judgment validation phase were similarly generated following the procedure outlined in Study 
1 Phase I. Each participant judged their own visual model’s images plus that of five randomly selected other 
participants’ images within the same condition.

Participant Procedure
The participant procedure for creating the individualized image models was nearly identical to Study 1 with 
the exception of the new target judgments (age, feminine-masculine, attractiveness, and familiarity) and an 
increased number of trials (from 300 to 1000). We increased the number of trials to assess the optimal number 
of trials required for generative reverse correlation in a secondary analysis (see Supplemental Materials).

After taking part in the image generation phase, participants were invited back in a separate asynchronous 
online session to judge images on the target category they were assigned to. Stimuli for this portion of the 
experiment consisted of images created using their own visual model (at model values +/-6, +/-4, +/-2, +/-1, 0) 
as well as a random sample of five other participants’ images (at model values +/-6, +/-4, +/-2, +/-1, 0) for a total 
of 54 images. Thus, a participant who made age categorizations, which were used to create their visual model 
of “age,” in Phase I, always saw faces generated by “age” models of other participants in Phase II. Participants 
judged all images in Phase II twice across two blocks. Images were randomized across participants and blocks. 
All other aspects of Phase II were identical to that of Study 1 Phase II (including scale, demographic, and debrief 
questions).

Study 3
Participants
One hundred and twenty-four participants took this study online through CloudResearch. Like Study 2, we only 
included in the analyses participants who completed the study in its entirety and did not restart. This left us with 
a final sample of 115 participants across each condition: feminine/masculine = 58; un/attractive = 57.

Participants (Mage = 42.06, SDage = 11.27) self-identified as follows: 44 women, 68 men, 1 non-binary, 1 
trans (transgender, trans man, trans woman); 1 American Indian/Alaskan Native, 5 Asian, 11 Black, 4 Latinx, 
84 White, 9 more than one race, and 1 other/not reported. Out of the 115 usable participants in Phase I (image 
model construction), 96 returned for the rating component (Phase II). One participant completed the survey 
twice and their data was removed from analyses. Additionally, four participants had negative or near zero test-
retest reliabilities (r < .05) in Phase I. However, none of these participants completed Phase II, so their data did 
not affect subsequent analyses. This left a final sample of 96 participants across each condition for Phase II: 45 
for feminine/masculine and 51 for un/attractiveness.

Stimuli
In order to generate high-quality, neutral-appearing face stimuli, we fine-tuned the StyleGAN-2 FFHQ model 
with a set of 47,724 high quality neutral faces (over 75,000 training images with augmentation). We trained the 
new generative adversarial network (GAN) for an additional 4,000 epochs reaching a final Fréchet inception 
distance score of 4.19, which is comparable to the original StyleGAN-2 FFHQ model trained on 70,000 face 
images. Additional training details and examples of random images sampled from the new model’s latent space 
are presented in the Supplemental Materials. We have made this model free for researchers ​(​​​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​
/​P​s​y​c​h​I​n​s​i​g​h​t​/​m​o​d​e​l​-​z​o​o​​​​​)​.​​

In order to select the stimuli that participants saw, we first randomly generated a large set of face images from 
the new model (> 1000). Next, we manually inspected the images and removed any faces that contained artifacts 
or were clearly warped. Based on a secondary analysis performed on Study 2’s data, we concluded that 300 image 
trials were enough to obtain stable visualizations from participant’s idiosyncratic visual model vectors. Thus, we 
selected the first 300 images out of the remaining pool to act as stimuli in the experiment.

Participant Procedure
The participant procedure was nearly identical to Study 2 with three minor differences. First, instead of 1000 trials, 
participants completed 300 trials. Second, we elected to only examine and validate two judgments: femininity/
masculinity and attractiveness. Finally, during the validation phase of the study (i.e., Phase II), participants 
judged visual representations from their own and other’s idiosyncratic visual models at model values of +/-1, +/-
2, and 0. We reduced the model interpolation value range because images constructed at higher values quickly 
degraded in quality for some attributes and participants (i.e., the idiosyncratic latent space went out of sample; 
see Supplemental Material for details and Fig. 5A, second row for an example).

Study 4
Participants.

One hundred and forty-six participants (Mage = 40.22, SDage = 10.97) completed the image generation phase 
of this experiment online through CloudResearch. Participants self-identified as follows: 58 women, 85 men, 
1 non-binary, 1 trans (transgender, trans woman, trans man), 1 not reported; 3 Asian, 18 Black, 1 Latinx, 111 
White, 12 more than one race, 1 not reported.

Two hundred and sixty participants completed the image judgment phase of this experiment online through 
CloudResearch. Two participants completed the experiment twice and an additional 11 restarted the experiment; 
these participants were removed from additional analysis. The remaining 247 participants (Mage = 43.88, SDage 
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= 12.58) self-identified as follows: 123 women, 116 men, 3 non-binary, 2 trans (transgender, trans woman, or 
trans man), 3 not reported; 1 American Indian/Alaskan Native, 17 Asian, 18 Black, 9 Latinx, 1 Middle Eastern, 1 
Native Hawaiian or Other Pacific Islander, 179 White, 1 other, 1 not reported, and 16 more than one race.

Stimuli
The stimuli for the image generation phase of this experiment were the same stimuli as in Study 3. The images 
generated during this phase were then used in the second phase as stimuli (see Fig. 6A for examples of each 
context-dependent trustworthy visualization). Twenty-six participants had negative or near zero test-retest 
reliability (r < .05) and one participant did not use all three response options at least once. This left us with a final 
sample of 119 participants across the three conditions: 45 “trust to fix your car”; 43 “trust to watch your child”; 
and 31 “trust to invest your money”.

Stimuli in the image judgment phase were images generated from each valid individual participant’s model 
from the image generation phase. For each individual model, we constructed an image at +/- 1 and +/- 2 for a 
total of 476 unique images to be judged (4 images x 119 participants). After removing poor quality participants 
in Phase II (test-retest r < .05; n = 26), each of the 476 images was judged on average by 27.86 participants.

Participant Procedure
The participant procedure for the image generation phase of this study was largely the same as Studies 1–3. 
The only difference was that before categorizing each image, participants were presented with a brief context 
that situated the subsequent trustworthiness judgments. Participants were randomly assigned to one of three 
conditions: “trust to fix your car”, “trust to watch your child”, and “trust to invest your money”. As an example, 
participants who were randomly assigned to the “trust to fix your car” condition read the following during the 
instructions, “Imagine your car recently broke down and you need to find a reputable mechanic. You will be 
shown images of potential mechanics in your area. Your task is to provide ratings on how much you trust each 
individual to fix your car in an honest and satisfactory manner.” The other context-dependent scenarios can be 
viewed online in this study’s preregistration.

The participant procedure for the image judgment phase consisted of participants first being randomly 
assigned to judge the trustworthiness of each face within one of three context conditions, similar to that in the 
image generation phase. Next, participants serially judged a random subset of 60 of the 476 images on a scale 
of 1 = “not at all” to 7 = “very”. Importantly, all images were judged on all trustworthiness conditions, not just 
those assigned to similar context-dependent conditions. For example, images generated from the “trust to fix 
your car” condition in the first phase were judged in the second phase on the trustworthiness within all three 
categories, not just “trust to fix your car”. Finally, participants in this phase of the study judged each image twice 
across two separate blocks to assess their test-retest reliability. The order in which stimuli appeared across blocks 
and participants was randomized.
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